Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica B ; (6): 2234-2249, 2023.
Article in English | WPRIM | ID: wpr-982848

ABSTRACT

The many-banded krait, Bungarus multicinctus, has been recorded as the animal resource of JinQianBaiHuaShe in the Chinese Pharmacopoeia. Characterization of its venoms classified chief phyla of modern animal neurotoxins. However, the evolutionary origin and diversification of its neurotoxins as well as biosynthesis of its active compounds remain largely unknown due to the lack of its high-quality genome. Here, we present the 1.58 Gbp genome of B. multicinctus assembled into 18 chromosomes with contig/scaffold N50 of 7.53 Mbp/149.8 Mbp. Major bungarotoxin-coding genes were clustered within genome by family and found to be associated with ancient local duplications. The truncation of glycosylphosphatidylinositol anchor in the 3'-terminal of a LY6E paralog released modern three-finger toxins (3FTxs) from membrane tethering before the Colubroidea divergence. Subsequent expansion and mutations diversified and recruited these 3FTxs. After the cobra/krait divergence, the modern unit-B of β-bungarotoxin emerged with an extra cysteine residue. A subsequent point substitution in unit-A enabled the β-bungarotoxin covalent linkage. The B. multicinctus gene expression, chromatin topological organization, and histone modification characteristics were featured by transcriptome, proteome, chromatin conformation capture sequencing, and ChIP-seq. The results highlighted that venom production was under a sophisticated regulation. Our findings provide new insights into snake neurotoxin research, meanwhile will facilitate antivenom development, toxin-driven drug discovery and the quality control of JinQianBaiHuaShe.

2.
Acta Pharmaceutica Sinica B ; (6): 272-282, 2018.
Article in English | WPRIM | ID: wpr-690911

ABSTRACT

The cultivation of plants is hindered by replanting problems, which may be caused by plant-driven changes in the soil microbial community. Inoculation with microbial antagonists may efficiently alleviate replanting issues. Through high-throughput sequencing, this study revealed that bacterial diversity decreased, whereas fungal diversity increased, in the rhizosphere soils of adult ginseng plants at the root growth stage under different ages. Few microbial community, such as , Cytophagaceae, , , Sphingomonadaceae, and Zygomycota, were observed; the relative abundance of microorganisms, namely, , Enterobacteriaceae, , Cantharellales, , , and Chytridiomycota, increased in the soils of adult ginseng plants compared with those in the soils of 2-year-old seedlings. 50-1, a microbial antagonist against the pathogenic , was isolated through a dual culture technique. These bacteria acted with a biocontrol efficacy of 67.8%. The ginseng death rate and abundance decreased by 63.3% and 46.1%, respectively, after inoculation with 50-1. Data revealed that microecological degradation could result from ginseng-driven changes in rhizospheric microbial communities; these changes are associated with the different ages and developmental stages of ginseng plants. Biocontrol using microbial antagonists alleviated the replanting problem.

3.
Acta Pharmaceutica Sinica B ; (6): 458-465, 2018.
Article in English | WPRIM | ID: wpr-690893

ABSTRACT

is famous for its important therapeutic effects. Saponins are bioactive compounds found in different parts and developmental stages of plants. Thus, it is urgently to study saponins distribution in different parts and growth ages of plants. In this study, potential biomarkers were found, and their chemical characteristic differences were revealed through metabolomic analysis. High-performance liquid chromatography data indicated the higher content of saponins (, Rg1, Re, Rd, and Rb1) in the underground parts than that in the aerial parts. 20()-Protopanaxadiol saponins were mainly distributed in the aerial parts. Additionally, the total saponin content in the 3-year-old plant (188.0 mg/g) was 1.4-fold higher than that in 2-year-old plant (130.5 mg/g). The transcriptomic analysis indicated the tissue-specific transcription expression of genes, namely, , , , , and , which encoded critical synthases in saponin biosyntheses. These genes showed similar expression patterns among the parts of plants. The expression levels of these genes in the flowers and leaves were 5.2fold higher than that in the roots and fibrils. These results suggested that saponins might be actively synthesized in the aerial parts and transformed to the underground parts. This study provides insights into the chemical and genetic characteristics of to facilitate the synthesis of its secondary metabolites and a scientific basis for appropriate collection and rational use of this plant.

SELECTION OF CITATIONS
SEARCH DETAIL